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- ONE-DIMENSIONAL QUASISTATIC KINETICS

SUMMARY

A comparison between the quasistatic method and the direct method of
solving one-dimensional, zero-power reactor transient problems was made.
Calculations were performed for a slab mockup of a heavily absorbing SRP
production reactor using QX1 and gDQ, both of which employ the improved
quasistatic method, and WIGLE which utilizes a direct approach.

The results of the study support the following conclusions and observations:

(1) Each of the three codes accurately calculates one~dimensional,
zero-power reactor transient problems,
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gsensitive function of the time interval hetween spatlal
calculations (i.e., has less error) than the solution

- obtained by the direct method., In other words, for com-
parable accuracy, larger time steps between spatial calcula-
tions can be used in the quasistatic method than iIn the
direct method,

—
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* The authors gratefully acknowledge M. Becker and D. A. Meneley for
their interest and helpful suggestions during the course of this work.
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(3) The code employing the direct method, WIGLE, required much
less computer time for solving one-dimensional, two-energy
group, zero-power reactor transient probilems than the
quasistatic code, QX1,

INTRODUCTION

Multi-dimensional reactor transient calculations utilizing the direct
finite-difference method of solution are quite expensive when performed
on the present generation of computers. In order to reduce computing
costs without introducing unacceptable inaccuracies, more approximate
methods of sclution are being developed, One such method, proposed and
belng developed by Meneley and hls associates at %rgonne National
Laboratory, is the "improved quasistatic" method.

In this method, the space, energy, and time-dependent flux #(r,E,t) is
factored as follows:

#(T,E,t) = T(t) ¥(F,E,t)

where the shape function, ¢(r,E,t) is a slowly varying function of time
relative to the fast varying amplitude function, T(t). The central idea
of the quasistatic method is that ¥(r,E,t) may be computed less often
during the course of a transient than &¢(r,E,t). Thus, a savings in
computer time should be realized since a significant portion of any
transient calculation 1s the time required to calculate the space~ and
energy-dependence of the neutron flux.

A primary consideration in the evaluation and subsequent implementation of
any new method is accuracy. Meneley investigated the accuracy of the
gquasistatic method without feedback for both thermal and fast reactors
having generation times ranging from 102 sec. to 3 x 10-! sec. He found
that, although the accuracy of the method was entirely adequate for all
the cases that he considered, the error associated with the method was
much larger for thermal systems with_large generation times than for fast
systemsgwith small generation times. A simllar result was also found by
Fuller,=

Hence, the primary objective of this work is to investigate the accuracy

of the quaslistatic method with respect to SRP reactors which have genera-
tion times of the order of 10~ sec. In order to accomplish this objective,
a comparison between calculations performed using the quasistatic method
with calculations performed using a direct finite-difference (the so-called
"exact" method) approasch was mage. Two codes employing the improved
quasistatic mgthod, #DQ and QX1°, and one code utilizing the direct

method, WIGLE™, were used in the investigation. QX1 and WIGLE are
production status, one-dimensional codes originally developed at Argonne
National Laboratory and Bettis Atomic Power Laboratory, respectively.

#DQ 1s a one-dimensional code developed at SRL for use as a research tool.
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In this report, & description of the lmproved quasistatic method is
presented., Calculational results, which 1llustrate the accuracy of the

method, are presented for two types of perturbations - a highly localized
perturbation and a nearly uniform perturbation. Executlon times for the
two production codes, QX1 and WIGLE, are also presented.

THE QUASISTATIC METHOD

The improved quasistatic kinetics method is an approximate method for
solving the following equations:

vt 3% g(r,t) =[V'£(f',t)v- A(F,t) + (1-B)3_p§‘_T(i'-,t)] g(F,t) (1)
M
4':{: ’Zi Ai Ci (r,t) + 3 (r,t)
a—a'E Ci(f"t) = aj_ET(E’t)g.(fst) - Ai Ci(f‘,t) i=1,...,M (2)

where T is the position vector, t is time, and y’l is a G x G diagonal

matrix containing the inverse velocities for G energy groups. A doubly
underlined quantity denotes G x G square matrix, a singly underlined
guantity denotes G x 1 matrix, and a scalar is denoted by a quantity
with no underline. ¢ is the flux vector, D is the diffusion coefficilent
(diagonal) matrix, afid A is the removal pliis inscattering matrix. B

is the delayed Beutron Traction, X_ 1s the prompt neutron fission
spectrum, and F" denotes the tranEBose of the production cross section
vector. M denotes the number of delayed neutron precursor families,

X, 1s the delayed neutron fisslon spectrum, and A, 1is the decay constant
f%r precursor famlily 1. C, is precursor density %or precursor family i,
S is the external neutron “source vector, and Bi is the delayed neutron
fraction for precursor family i.

The quasistatic method can also be used to solve the thermal/hydraulic
equations simultaneously with the above neutronic equations. However,
this work is concerned only with the neutronic equations,

The fundamental assumption in the quasistatic method is that the flux
vector may be_separated intoc a shape function that is slowly varying
with time, ¥(r,t), and a more rapidly varying amplitude function, T(t),
as shown below:

g(r,t) = ¥(r,t) T(t) (3)
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with

%<@_(f-,t), Z'l £($,t> = constant = vy (4)

where P is adjusted so that vy = 1 at t = 0. @ is a weight function
that 1s usually selected to be the unperturbed steady state adjoint
solution of Equation (1). Equation (E determines uniquely.the -
separatlon indicated by Equation (3). More importantly, the condition
that v £ 1 for all time provides a constraint which must be satisfied
throughout the transient.

The central idea in the quasistatic method is that a low order approxi-
mation with large integration time steps may be used for the calcula-
tion of ¥(r,t); whereas, a high order approximation with small integra-
tion time steps 1s used for the calculation of T(t). The separation
indicated by Equation (3) should permit the use of larger time steps for
the calculation of #(r,t) than would be required for the calculation of
g(r,t). Thus, since a very time-consuming portion of any space-time
fbansient calculation is the spatlial calculation at each time step, a
reduction in the computation time per transient should be realized
provided the addlitional computation time required for the calculation of
T(t) and also the time required to satisfy the constraint equation are
not significant. Substltution of Equations (3) and (4) into Equations
(1) and (2) ylelds, after some rearrangement, the following equations:

=

[ . .\
4 T(t) = \Eit’ﬂigg‘t’}T(t) +

T A g (t) +Q(t) (5a)
i=1
d B, (t)
St 8 (t) = wiz%j-T(t) - 28, () 1 =1,...,M (5b)
where:
M

o oo s [oomy ) s
A E =V = [ PooL i _

M " M
B y 2 y % ,am“w\
. y A— [\_ - A L

i=1 i=1

* The brackets indicate an inner product defined as

<£,g§_>=[ CNERRLRS. (?11"'9%(}) (?l) dr
Volume e %

a1 9cg
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w,V ¢ constant
X’=
t
¢, (F,t) = B, f FL(7,67) @(F,t1) e
%o
A, (t-t,) )
+ e Cy(Tyty) » 1=
-1 3 -1, 14t _ [,
¥ ¢ v+¥ ﬂ’..i'—t"[vrl?
M

Thus, instead of solving Equations (1) and

statlc approach is to solve Equations (5)
the constraint equation, Equation (4). 1
no approximations have been made thus far
solution of Equations (4-7).

Numerical Solution of Equations (4-7)

Equations
different Integration time Intervals, At
below:

(6)

(7)

$2% directly, the guasi-
(6), and {7) along with

>

It is important to note that

. Next consider the numerical

(4-7) are solved numerically uiing a,hierapchy of three

e atd € At » a8 shown
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The shape functiog ¢( t) ig assumed to vary linearly over the largest
time interval, At 1 A simple backward difference in time 1is
used to approxima%e Eq&atioﬂ (7) which gives the followilng:

f-VDv A - (1-8) x. FF + vt rld—T+ﬁ1 N (7,2
\ = = =p — = [T dt At JJB n
t
n
M
1 -1 - ,B 1 1
=P % ¥(rsty 1) 47 X401 + 78 (8a)
=] tB
In shorthand notation Equation (8a) becomes i
B
g ¥(r,t)) =2 (80)

where definitions of the operator O and the driving function Z are
obvious from comparing (Bag and (8b).

In Equa 1on 56 Hhe fisslion density Flﬁ is assumed to vary linearly
over At2 which gives the FoIllowing, using g = ¢ T,

o, (F,t) = 8, [afi‘gT(f,tg) ¥(F,td) + vIET (R0 )_q;_(f-,tg_l)]

J
-Ai(t -t .1)
+ e ¢, (¥, tJ 1) 1 =1,...,M (9)
where: J .
*n A, (td -t
n 1 i‘'n 3
ay = e (' - to 1) T(t') at!
t t J
n n-1 tn—l
J
b L (e -t
P = 1 o itn t'j t1) T(t') dt’
L ERRS R ; ° (tp - 1) )
n n-1 t
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The an and b above are evaluated simultaneously with the solution of

Equatrons (éa) and (5b) using a fourth order Runge-Kutta approximation

over the At™ time intervals. Values for the coefficlents, p, s and
are computed using thelr inner product definitions at the t tiﬁe points.

Quadratic interpolation is used to obtain intermediate values of the

coefficients at the tK time points.

Equation (8b) is solved in a somewhat unusual manner which involves the use
of Equation (4).

Specifically, expand 0O as 0™ - 0 where

no
i

1 , aafi1ar ., 2
| VoV-4a+Y [‘rf'a““‘"‘g] 5

12
n
.
r—-/\ﬁ

=
[}

™

p —

3l

A conventional 1terat1ve approach for solving the above equation is as
follows:

o ¥

where 4 is the iteration index and

L <i,g E€>

o = (10b)
1, L2

with 1 = (1...1)7

As discussed by Meneley, 3‘numerical“difficulﬁieééare-encounteredc

when using the above procedure for transients in the neighborhood of
prompt critical. In order to circumvent this problem, Meneley proposed
the following procedure which utilizes Equation (4).

W
ottt = ez (11a)
Y

no
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where

b =le v Y. (110)

Note that the 4 iteration

irm +ha chnvea mramadiira "
AT W L b 1% Aot Ay - fd A vl b VA A e B WA L &

4 P Yo s T
verged value of vy and & converged shape function y. This procedure
has been implemented successfully in the QX1 and #DQ codes. For s
more detailed discussion of this procedure see Reference (3).

A general description of the solution algorithm is outlined below:

1, Assume everything 1s known at time ti_l.
2. futragol%te ¥ linearly with respect to time from gjf,tﬁ_l)
o ¥(r,t).
3. Evaluate p, B, /A, B, at ti using their inner product
definitions.
Lk, Interpolate p, B,/A, 51 between tg_l and t% at the tF points.
5. Solve Equation (5) and evaluate a?, b? out to ti .

6. Update Ci(f,t) to t = ti using Equation (9).

7. If ti < tg, go to next tJ point and repeat steps 3 - 6.

8. If ti = ti, solve Equation (11) for & new i(f,tglfandfa:new‘
Y.
B
9. If Ynew = 1, go to the next At~ interval and repeat steps 2 - 8,
10. If # 1, replace ¥(¥r, tB) with the new i(f,tB) and repeat

y
stepB®¥2 - 10 fog the same RtD interval, or repeft steps 2 - 10
for a shorter At® interval,.

DISCUSSION OF RESULTS AND CONCLUSIONS

A comparison between results obtained with the two quasistatic codes, QX1
and #DQ, with results obtalned with WIGLE was made for the one-dimensional
slab reactor shown in Figure 1. The steady-state, two-group parameters
that were used are presented in Table I. This particular reactor is
representative of a somewhat heavy SRP lattice which has a generation time
of 1.7% x 10™% sec, For the first two transients, the perturbation was
initlated by decreasing the thermal group capture cross sectlon in Region
3.
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TABLE I

DPST-72-266

by

UNPERTURBED TWQ GROUP PARAMETERS FOR PRODUCTION REACTOR MQCKUP
(TRANSVERSE BUCKLING - 50 WB)
1 i3 1 i
Group 1 Di gr Zs vZf :c
Buckled 1 1.385 ,010796 .008547  ,0020027 .001401
Zone
2 8792 ,018100 -0~ .026304 .009802
Flat Zone 1 1.385 .010796  .008547  .0020917 .001401
2 8792 .019778 -0~ .020348 .01148
* 21 = Ei + EE + Eiﬂj . Vfl = lo"TA Vfl = 4_ 04 x 10'6
r o] bi s o 1 s 2
DELAYED NEUTRON PARAMETERS
= A (sec"l)
GROUP 1 i
1 . 0006856 1.55
2 . 0043140 .209
3 .0017650 L0247
4 . 00008052 .00280
5 . 00003679 .000147
6 .00000119 .00000141
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In all of the calculations described above, the "average" time interval
between spatial (and energy) calculations was small - approximately .02
seconds. An "average" time intervel 1s reported since QX1 has an auto-
matic time step algorlithm which selects the points in time, non-uniformly,
at which the shape function is to be calculated.

In order to obtain more detailed information on the accuracy of the quasi-
static method versus the direct method, the sensitivity of each solution
to the average time interval between spatlal calculations was investigated.
The power at 5 seconds and the power at 10 seconds versus the average time
interval between spatial calculations are presented in Figures 8 %ﬁd g,
respectively, for the transient initlated by a H-second ramp in in
Reglon 3. The same information for the transient initiated by th& nearly
uniform perturbation 1s presented in Figures 10 and 11l. As may be observed
in each of the four figures, the quasistatic sclutlon 1s less sensitive to
the average time interval than the direct solution. In other words, for
the same average time interval between spatial calculations, the error
assoclated with the quasistatic method is less than the error associated
with the direct method.

Finally, as addltional information, the computer running time (i.e., CPU
time) versus the average time interval between spatial calculations is
presented in Figures 12 and 13 for two of the transients discussed above,
efficient than QX1 for solving the type of problems considered 1n this
work; namely, one-dimensicnal, two-group, reactor transient problems with
no engineering feedback. However, a careful distinction should be made
at this point between efficlency of codes and efficlency of methods. QX1
is a multigroup (up to 30 energy groups) code which includes, in addition
to the neutronics model, an elaborate engineering feedback model that 1s
characteristic of an LMFBR., WIGLE is strictly a two-group code with an
unsophisticated feedback model. QX1 has a generalized, automatic time
step selector; whereas, 1n WIGLE, the time steps are input by the user.
These differences, as well as programming efficlency, in the two codes,
cause & difference 1n computational time. ‘

An example of one methodical difference which affects the computatlion
time comparison is the way QX1 performs a spatial calculation at each
time step versus the way WIGLE performs the same calculation at each time
step. Because WIGLE 1s only a two-group code, 1t uses a non-iterative
technlque to perform the spatial calculation at each time step as opposed
to QX1 which uses an lterative technique to solve the same type of prob-
lem simply because QX1 must be able to handle up to 30 energy groups. In
other words, the QX1 iterative method 1s less efficient for performing a
two-group spatlal calculation than the non-iterative WIGLE method.
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In order to ascertain the 'lmprnvmmnh‘i- in the ﬂY1 rnv}“i‘n time which would

e Mt e N L

occur if QX1 used the non-iterative WIGLE technique to perform the spatial
calculation, a CPU timer was employed In each code to measure the actual

time that each spent in doing the spatial calculations. This information
was then used to obtaln an estimate of the computation time that QX1 would
require if it utilized the non-iteratlve technique employed in WIGLE., The
results are presented in Figures 12 and 13. Note that the improvement in
QX1 computation time is more significant for the transient initiated by

the localized perturbation than for the transient initiated by the nearly

uniform perturbation. Nevertheless, there still remeins sufficient
differences in the two codes that WIGLE is definitely more economical than
QX1 for solving one-dimensional, two-group problems with no engineering

feedback,
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